Gauks-Colazor equations
$\left(E, \bar{\nabla}_{k, i}\right)=T \oplus N$ ortuoncomal
induces comucestion $\pi^{\top} \bar{\nabla}=\nabla$ on T
Q: how does Ω relate to $\bar{\Omega}$?
In order to mate this easter thou lost then, separate the odes © TM oud G.
A: clone on on. Trow $\frac{a}{e_{1} \ldots e_{d}} \widehat{\mu} e_{d+1} \cdots e_{n}$ Bor E $\bar{\nabla}_{i} e_{\alpha}=e_{\beta} A_{i \alpha}^{\beta} \quad A_{i}$ shew-sgmentric

$$
\begin{aligned}
& \bar{\Omega}=d \bar{A}+\bar{A} \cdot \bar{A} \\
& \bar{A}=\left[\begin{array}{c|c}
A & -\check{L} \\
\hline h & *
\end{array}\right] \\
& {\left[\begin{array}{l|l}
A & -h^{v} \\
\hline h & +
\end{array}\right]} \\
& \bar{A} \wedge \bar{A}=\left[\begin{array}{c|c}
A \wedge A-h^{\nu} \sim h & -A \sim h^{\prime} \\
\hline h \wedge \Gamma & +
\end{array}\right]
\end{aligned}
$$

conclusion

1) $\bar{\Omega}_{\sigma}^{b}=\Omega_{\sigma}^{b}-{h_{\mu}}_{h^{\prime}}^{h_{a}^{\mu}}$

$$
x h_{a}(y)+h_{b}(x) \Gamma_{a}^{b}(x)
$$

2) $\bar{\Omega}_{a}^{\mu}=d h_{a}^{\mu}+h_{b}^{\mu} \wedge A_{a}^{b}$

In puotitula, if $\delta_{0} \leqslant \mathbb{R}^{3}$ is a suture, $\left(e_{1}, e_{2}\right)$ on on Prove, $h^{b}(x)=h\left(x, e_{b}\right)$ is the $2^{u d}$ of
1)

$$
\begin{aligned}
s_{2}^{\prime}(x, \gamma)= & h(e, x) h\left(e_{2}, y\right)-h(e, y) h\left(e_{2}, x\right) \\
= & K d V_{d}(x, \gamma) \quad \begin{aligned}
x=x^{\prime} e, r y^{2} e_{2} \\
Y=c^{\prime} e, y^{2} e_{2}
\end{aligned}
\end{aligned}
$$

2)

$$
\text { 2) } \begin{aligned}
& \nabla_{x} h\left(e_{a}, y\right)=x\left(h\left(c_{a}, r\right)\right)-h\left(\nabla_{x} e_{a}, \zeta\right)-h\left(e_{a}, \nabla_{x} r\right) \\
&-T_{a}^{b}(x) h\left(e_{b}, r\right) \\
& \Rightarrow \nabla h\left(x, e_{a}, y\right)-\nabla_{h}\left(y, e_{a}, x\right) \\
&=d h_{a}(x, y)-\nabla_{a}^{b} \sim h_{b}(x, r) \\
&=0
\end{aligned}
$$

\Rightarrow Th tatelly agmenotic
Also on a kusue, $A=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right]$ for sone $1 \cdot \operatorname{Ram} \theta=\left\langle e_{1}, D e_{2}\right\rangle$

$$
\Omega=d \omega
$$

The (Local Gauss-Bonnet) Suppose $R \leqslant(S, g)$ is a bounded region of an oriented surface S, contrived in a single prichuctart $p(l)$, which we take to be oriented.
suppose further that R is bounded by a single simple cloned carve (eqgeiralently, has no holes.) Then

$$
\int_{\partial R} k d s=2 \pi-\iint_{R} k d \sigma
$$

Recall ∂R is oriented so that $\psi^{-1}(\partial R)$ is countercloctewine in \mathbb{R}^{2}.

Comments

- We hardly used the chart X.
the assumption that R is contained in a single chart is easily elinnimated (next lective) us soon as we do tine integrals over general vegrons.
- If $S=\mathbb{R}^{2}$, this is the theorem of forming tangents (windsngtt $=1$)

Pros Stokes than sxo.tey

Cor
With A and E as above,

$$
-\iint_{R} k d \sigma=\int_{\partial R}\left\langle D e_{1}, e_{2}\right\rangle d s
$$

Warning King is wat wascily
the toughest to $2 R$
T

$$
=\iint_{R} k d \sigma=-\iint_{x^{-1} R} k \sqrt{E G-F^{2}} d u d u=\int_{\partial x^{-1} R}\left\langle\widetilde{T}_{m} \widetilde{v}\right\rangle u^{\prime}+\left\langle\tilde{T}_{v}, \tilde{v}\right\rangle v^{\prime} d s=\int_{\partial R}\left\langle\widetilde{T}^{\prime}, \tilde{v}\right\rangle d s
$$

Comments

- the RHS $=\int_{\partial R}\left\langle D_{T} \widetilde{T}, \widetilde{V}\right\rangle d s$, where T is the tongent to $2 R$.

In particular, while it (seems to) depend on the Brace Fred, it does not depend on the second fundamental Forme, so it is intoinciic. By the cor, the LHS is intrinsic as nell. This is just Gaussis freer.

- the LHS (seems to) depend on II - though in fact it dearn'tbut clearly lees not depend on the choice of tongent Rooming $(\widetilde{T}, \widetilde{v})$. Hence the right hand side must not either! As long asit extends over, R
in cords

IF $\mathbb{A} \in a$ coord drart, Grahom-Lchwidt \rightarrow or. Prone Rield

$$
\left\langle e_{1}, e_{2}\right\rangle
$$

bem $\left\langle\nabla T_{,}, V\right\rangle=\left\langle\nabla_{e_{1}}, e_{2}\right\rangle=d \theta$

$$
\begin{aligned}
T & =e_{1} \cos \theta+e_{2} \sin \theta \\
U & \left.=-e_{1} \sin \theta+e_{2} \cos \theta\right) \\
\operatorname{lem} \int_{\partial \pi} d \theta & =\int_{\partial \pi} d \hat{\theta}
\end{aligned}
$$

Γ invertiont onder contincious bibernationg
lem $\int_{2 \sim} d \hat{\theta}=2 \pi$
${ }^{\text {Torning tongents then }}$ t
Sumnory:

$$
\int_{\alpha \in} k_{q}=2 \pi+\int\left(\left(x_{1}, e_{2}\right)=2 \pi-\int_{Q} k\right.
$$

Runle Petter pirture: Ω, θ vell-dBhed on $T^{(i)} S$.

Extension:
If $2 R$ is a broken geodesic, then we con nae the car above to define its geodesic curvature as a measure, meaning we con boric its 'integral ow r all sets:

$$
\int_{a}^{b} k_{g}^{(\text {meas })}:=\theta\left(b_{b}\right)-\theta(a)
$$

w th $\theta \bmod 2 \pi I=C^{T} \bar{T}$ with \bar{T} parallel along the broken geodesic (ciS. lee (7.2). Let $\varphi \operatorname{mad} 2 a D=L_{\sim}^{T}$, and note

$$
(\theta+\varphi)(L)-(\theta+c)(0)=2 \pi
$$

$$
\widetilde{T}=\frac{x_{u}}{\left|x_{u}\right|}
$$

becans a broken simple cloned carve in \mathbb{R}^{2} still has turning number 1.

Then
(1)

$$
\begin{aligned}
\int_{2 R} k_{g}^{\text {(meas })} & =\theta(L)-\theta(0)=2 \pi-(\varphi(L)-\varphi(0)) \\
& =2 \pi-\int_{2 R} \varphi^{\prime} \\
& =2 \pi+\int_{2}\left\langle\tilde{\tau}^{\prime}, \tilde{v}\right\rangle d s \\
& =2 \pi-\iint_{R} k d \sigma
\end{aligned}
$$

(2) $\int_{\partial x} k_{y}^{\text {(wean })}=\int k_{\partial r} k_{y} d s+\sum_{\substack{\text { evertor } \\ \text { angles } \theta_{i}}} \theta_{i}$, whore we

Doive the exterior angles θ_{i} of α cs:

Puttivy (D) +(2) toyther given, for broten geodecics

$$
\int_{\partial R} x_{y} d s+\sum_{\substack{\text { extevitar } \\ \text { aydes } \theta_{i}}} \theta_{i}=2 \pi-\iint_{R} K d \sigma
$$ sinedue a 0.5 .

Let X he a vectar field on S witn isolated zeros. order of a 300 'is winding nacuter of $\frac{x}{|x|}$ on a sumbly eg

1

1 (5)
1

-1

Then If S is a suface w/ 2 oud x is a v.S. on S then

$$
\begin{aligned}
& \text { If } S \text { is a } \pi_{0}+\int_{S} k^{\left(-\pi \theta_{j}\right)}=2 \pi\left(\text { Hard }_{p}(x)\right)
\end{aligned}
$$

Pf let $S^{v}=S$-ictrebe arouch ecech P_{i} in a chart

Anasting fect LHES beres not dos on X \Longrightarrow ruverront $\& G$, called Euler devatariatic.

Prop In one triangulation of S,
the number of Vertices

- the number of Edges
t the number of Faces (triongles)
is the same. It is called the Euler characteristic of S, written $X(S)$.

$$
\begin{aligned}
\text { Eg } & x(\Delta)=3-3+1=1 \\
& x(\infty)=x(G)=3-3+2=2 \\
& x(\infty)=x(1,0)=1-3+2=0
\end{aligned}
$$

dirfeomarphic to.
Prep Every compact oriented surface (is) a raided torus for save $n=0,1,2, \ldots . x(n$-hoed tarns $)=2-2 n$.

